Fázové rovnováhy v systémech směsných oxidů kobaltu

O. Jankovský*, D. Bouša, V. Mazánek, M. Nováček, J. Luxa, A. Libánská a Z. Sofer

VŠCHT Praha, Ústav anorganické chemie, JankovsO@vscht.cz

Abstrakt

Tato práce pojednává o termodynamických vlastnostech směsných oxidů kobaltu v systémech Ca-Co-O a Bi-Sr-Co-O. Nejdříve byly reakcí v pevné fázi připraveny všechny stabilní fáze v těchto systémech, která byly následně analyzovány pomocí STA, XRD, SEM a EDS. Dále byla změřena tepelná kapacita a relativní entalpie všech fází pomocí PPMS, DSC a vhazovací kalorimetrie. Kyslíková nestechiometrie byla zkoumána pomocí TG a redukcí vzorků ve vodíkové atmosféře. Na základě těchto výsledků byly zkonstruovány fázové diagramy Ca-Co-O, Bi-Co-O a Sr-Co-O a Bi-Sr-Co-O.

1. Úvod

Díky nedostatku fosilních paliv a stále vzrůstající spotřebě elektrické energie je třeba hledat, kromě nových zdrojů energie, i možnost, jak omezit množství tepelných ztrát v průmyslu. Přímá regenerace energie pomocí termoelektrických materiálů z odpadního tepla se jeví jako vhodná metoda například v automobilovém průmyslu u výfuků automobilů. Regenerace elektrické energie je založena na Seebeckově jevu. Elektrická energie je generována v důsledku teplotního gradientu mezi dvěma konci vodiče. V budoucnosti se uvažuje o užití v kosmonautice u sond směřujících za hranici sluneční soustavy, kde by tyto materiály generovaly elektrickou energii z tepla produkovaného jaderným reaktorem.

Sloučeniny jako např. Bi₂Te₃, Zn₄Sb₃, CeFe₄Sb₁₂, SiGe, SeTe, La₂Te₃, SiGe, PbTe, CoSb₃, (AgSbTe₂)_{1-x}(GeTe)_x atd. mají vysoký koeficient termoelektrické přeměny, ale aplikace těchto materiálů je složitá: tyto látky se za zvýšené teploty na vzduchu snadno oxidují nebo rozkládají a navíc často obsahují vysoce toxické prvky (Sb, Se, Pb, atd.).

Materiály Ca₃Co_{4-x}O_{9+ δ}, a Bi₂Sr₂Co_{1,85}O_z patří do skupiny oxidových materiálů pro termoelektrickou konverzi. Ca₃Co_{4-x}O_{9+ δ} je termoelektrikem s kladnou termosílou (typu p), La_{1-x}Ca_xMnO₃ vykazuje zápornou termosílu (typ n). Na rozdíl od nízkoteplotních termoelektrických materiálů lze tyto materiály užít i při vysokých teplotách, nedosahují však ani zdaleka účinnosti neoxidových termoelektrických materiálů, což je hlavním důvodem, proč doposud nejsou komerčně využívány. Sériovým zapojením dvou materiálů s opačným znaménkem termosíly (typ p s typem n) umístěných v teplotním gradientu vznikne termoelektrická baterie. Hlavní výhodou termoelektrických článků je jejich jednoduchost: snadná konstrukce a absence pohyblivých částí i pracovního média.

Koeficient termoelektrické účinnosti (ZT) je bezrozměrná veličina popisující efektivitu termoelektrické přeměny. Je definovaný jako $ZT = S^{2*}T/(\lambda*\rho)$, kde S je termosíla, λ tepelná vodivost, ρ je měrný elektrický odpor a T je termodynamická teplota. Nejlepší termoelektrické vlastnosti tedy vykazuje materiál s co největší termosílou a s co nejnižším měrným elektrickým odporem a tepelnou vodivostí. Pro dosažení co nejlepších transportních

vlastností je třeba optimalizovat fázové složení těchto materiálů, proto je třeba tyto systémy detailně zanalyzovat a zkonstruovat příslušné fázové diagramy.

2. Experimentální část

Látky v systémech Ca-Co-O a Bi-Sr-Co-O byly připraven reakcí v pevné fázi z čistých oxidů nebo uhličitanů homogenizovaných k achátové misce. Po homogenizaci následovalo několik kalcinací, lisování na hydraulickém lisu a sintrování na vzduchu nebo v kyslíkové atmosféře.

Tepelná stabilita byla studována pomocí DSC (diferenční skenovací kalorimetrie), DTA (diferenční termická analýza) a TGA (termogravimetrická analýza) na aparaturách *Netzsch DSC 404 C Pegasus* a *Setaram Setsys Evolution*. Pomocí TGA byla studována i kyslíková nestechiometrie.

Fázové složení bylo analyzováno pomocí XRD (rentgenová difrakční analýza) za pokojové teploty pomocí práškového difraktometru *Bruker AXS D8 θ-θ* využívající záření CoKα. Rietveldova analýza byla provedena za pomocí programu *FullProf Suite* nebo *JANA*.

Mikrostruktura a prvkové složení byly analyzovány pomocí SEM (skenovací elektronový mikroskop) a EDS (energiově dispersní spektroskopie) na mikroskopu Tescan Lyra s FEG zdrojem elektronů a X-MaxN 20 mm² SDD detektorem.

Tepelná kapacita byla měřena za nízkých teplot pomocí PPMS (9 T, Evercool - type Quantum Design), zatímco za vyšších teplot pomocí DSC (*Micro DSC III* calorimeter Setaram). Měření DSC probíhalo v režimu v režimu step-by-step (teplotní kroky 5 K, rychlost ohřevu 0,3 K/min, izoterma 2600 s, kalibrace na syntetický safir, NIST č. 720, přesnost měření $\pm 1\%$.).

Stanovení relativních entalpií a vysokoteplotní závislosti tepelné kapacity C_{pm} na teplotě bylo provedeno na základě měření metodou vhazovací kalorimetrie na kalorimetru *Setaram HT Calorimeter* (sekvence vhozů při každé teplotě: standard-vzorek-standard-vzorek-standard, prodleva mezi jednotlivými vhozy 25 minut, kalibrace na syntetický safír, NIST č. 720, přesnost měření ±3 %.).

3. Výsledky a diskuse

Experimentálně stanovená topologie fázový diagramů, teploty fázových transformací a naměřená kalorimetrická a TGA data byly využity pro vyhodnocení zbývajících parametrů modelových závislostí Gibbsovy energie jednotlivých fází a k výpočtu fázových diagramů.

Všechny stechiometrické fáze a koncové členy nestechiometrických fází byly popsány standardním způsobem pomocí slučovacích entalpií $\Delta_f H^{\circ}(298)$, entropií $S^{\circ}(298)$ a teplotních závislostí tepelných kapacit $C_p(T)$. Pro vysokoteplotní byly příslušné teplotní závislosti aproximovány pomocí Neumannova-Koppova pravidla s využitím známých dat pro binární oxidy. Hodnoty $\Delta_f H^{\circ}(298)$ a $S^{\circ}(298)$ směsných oxidů byly nastaveny tak, aby byly reprodukovány experimentálně pozorované teploty fázových přechodů. Proměnlivá stechiometrie kyslíku byla popsána na základě krystalochemického modelu v rámci metody CEF (Compound Energy Formalism).

Jednotlivé ternární resp. kvaternární fáze jsou zobrazeny v následujících fázových diagramech zkonstruovaných pro p₀₂/p₀ = 0.21 (vzduch) v programu FactSage. Všechny zkonstruované fázové diagramy velmi dobře odpovídají experimentálně změřeným hodnotám jednotlivých fázových přechodů. Na obr. č. 1. je znázorněn fázový diagram systému Ca-Co-O, na obr. 2. je diagram Bi-Co-O, na obr. 3. diagram Sr-Co-O a na obr. 4. fázový diagram pro systém Bi-Sr-Co-O. Diagram Sr-Bi-O je známý. Detailní popis termodynamických vlastností včetně kyslíkové nestechiometrie jednotlivých fází je detailně popsán v publikacích popsaných na konci textu v oddíle literatura.

Obr. 2 Fázový diagram systému Bi-Co-O

Obr. 3 Fázový diagram systému Sr–Co–O. Fáze v subsolidové oblasti jsou značené jako S14C11 (Sr₁₄Co₁₁O₃₃), S6C5 (Sr₆Co₅O₁₅), S3C2 (Sr₃Co₂O_{6.33-δ}) a S2C2 (Sr₂Co₂O₅).

Obr. 3 Fázový diagram systému Bi–Sr–Co–O obsahující pouze termodynamicky stabilní fáze.

4. Závěr

Reakcí v pevné fázi byl úspěšně připraveny všechny termodynamicky stabilní fáze v systémech Ca-Co-O a Bi-Sr-Co-O a byly též zkonstruovány fázové diagramy Ca-Co-O, Bi-Co-O, Sr-Co-O a Bi-Sr-Co-O. Tato komplexní práce se zároveň zabývá i vlivem kyslíkové nestechiometrie na termodynamické vlastnosti směsných oxidů kobaltu. Se znalostí těchto

údajů bude nyní možné optimalizovat fázové složení termoelektrických článků tak, aby bylo dosaženo co nejvyššího koeficientu termoelektrické účinnosti.

Poděkování

Financováno z účelové podpory na specifický vysokoškolský výzkum (MŠMT č.20/2016).

Literatura obsahují detailní popis termodynamických vlastností

- 1. J. Hejtmánek, K. Knížek, M. Maryško, Z. Jirák, D. Sedmidubský, O. Jankovský, Š. Huber, P. Masschelein, B. Lenoir, *J. Appl. Phys.*, 2012, 111, 07D715.
- D. Sedmidubský, V. Jakeš, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek, J. Solid State Chem., 2012, 194, 199-205.
- 2. O. Jankovský, D. Sedmidubský, Z. Sofer, P. Šimek, J. Hejtmánek, Ceram.-Silikáty, 2012, 56, 139-144.
- 4. O. Jankovský, D. Sedmidubský, Z. Sofer, J. Eur. Ceram. Soc., 2013, 33, 2699-2704.
- 5. O. Jankovský, D. Sedmidubský, Z. Sofer, J. Čapek, K. Růžička, Ceram.-Silikáty, 2013, 57, 83-86.
- 6. O. Jankovský, D. Sedmidubský, Z. Sofer, K. Rubešová, K. Růžička, P. Svoboda, J. Eur. Ceram. Soc., 2014, 34, 1219-1225.
- 7. O. Jankovský, D. Sedmidubský, Z. Sofer, J. Leitner, K. Růžička and P. Svoboda, *Thermochim. Acta*, 2014, 575, 167-172.
- 8. O. Jankovský, D. Sedmidubský, K. Rubešová, Z. Sofer, J. Leitner, K. Růžička, P. Svoboda, *Thermochim. Acta*, 2014, 582, 40-45.
- 9. C. S. Lim, C. K. Chua, Z. Sofer, O. Jankovský, M. Pumera, Chem. Mater., 2014, 26, 4130-4136.
- 10. O. Jankovský, Š. Huber, D. Sedmidubský, L. Nádherný, T. Hlásek, Z. Sofer, Ceram.-Silikáty, 2014, 58, 106-110.
- 11. O. Jankovský, D. Sedmidubský, Š. Huber, P. Šimek, Z. Sofer, J. Eur. Ceram. Soc., 2014, 34, 4131–4136.
- 12. O. Jankovský, D. Sedmidubský, J. Vítek, P. Šimek, Z. Sofer, J. Eur. Ceram. Soc., 2015, 35, 935–940.
- 13. O. Jankovský, Z. Sofer, J. Vítek, P. Šimek, K. Růžička, P. Svoboda, D.Sedmidubský, *Thermochim. Acta*, 2015, 600, 89–94.
- 14. Ch. K. Chua, Z. Sofer, Ch. S. Lim, O. Jankovský, M. Pumera, ChemPhysChem, 2015, 16, 769 774.
- 15. O. Jankovský, Z.Sofer, J. Vítek, P. Šimek, K. Růžička, S. Mašková and D. Sedmidubský, *Thermochim. Acta*, 2015, 605, 22–27.
- O. Jankovský, Z. Sofer, J.Vítek, M. Nováček, T. Hlásek, D. Sedmidubský, J. Eur. Ceram. Soc., 2015, 35, 3005– 3012.