# Hodnocení adsorpce polycyklických aromatických uhlovodíků na částicích PM<sub>2.5-10</sub> a PM<sub>2.5</sub>

František Božek<sup>1)</sup>, Jiří Huzlík<sup>2)</sup>, Pavel Budínský<sup>3)</sup>, Magdaléna Náplavová<sup>4)</sup>

- <sup>1)</sup> Vysoká škola regionálního rozvoje, Žalanského 68/54, 163 00 Praha 17 Řepy, e-mail: frantisek.bozek@unob.cz
- <sup>2)</sup> Centrum dopravního výzkumu, v.v.i., Líšeňská 33a, 636 00 Brno
- <sup>3)</sup> Fakultní nemocnice v Motole, V Úvalu 84, 150 06 Praha 5
- <sup>4)</sup> Vysoká škola regionálního rozvoje, Žalanského 68/54, 163 00 Praha 17 Řepy

## Abstrakt

V pražském tunelu Mrázovka byly odebrány vzorky pevných částic aerodynamického průměru  $r_{2.5} \leq 2.5 \ \mu m$  a paralelně  $r_{10} \leq 10 \ \mu m$ . Po úpravě vzorků a jejich extrakci dichlormethanem byla v eluátech stanovena koncentrace 16 polycyklických aromatických uhlovodíků (PAHs) užitím plynové chromatografie v kombinaci s hmotnostní spektrometrií. Neparametrickou metodou Spearmanova koeficientu pořadové korelace bylo na hladině významnosti p < 0.01 prokázáno, že jednotlivé PAHs s výjimkou acenaphthylenu, acenaphthenu a indeno[1,2,3-cd]pyrenu, včetně jejich sumy, jsou vázány výhradně na částicích  $PM_{2.5}$ . Výjimka byla vysvětlena nízkými koncentracemi PAHs, které se pohybovaly v okolí meze stanovitelnosti, kde bylo možné předpokládat vyšší chybu stanovení.

# Úvod

Paralelně s výhodami dynamického rozvoje dopravy lze zaznamenat i řadu negativních dopadů tohoto procesu. Mezi vysoce závažné následky patří vedle produkce značného kvanta odpadů a zvyšujícího se počtu havárií vozidel jde především o kontaminaci jednotlivých složek životního prostředí, zvláště ovzduší v okolí silničních komunikací.

Výfukové plyny obsahují značná množství plynných kontaminantů včetně tuhých částic, na něž se adsorbuje směs anorganických a organických sloučenin, které negativně ovlivňují kvalitu a hodnoty společenského majetku, funkce ekosystému, morbiditu a mortalitu obyvatelstva. Mezi zdravotně vysoce závadné kontaminanty produkované dopravou a vázané na tuhé částice patří PAHs, jež jsou vedle toxicity podezřelé z karcinogenních, mutagenních a teratogenních efektů. Zdravotní efekt je funkcí množství PAHs vázaných na částicích, které závisí na aerodynamickém průměru částic, teplotě, vlhkosti vzduchu a řadě dalších faktorů.

## Analýza současného stavu

Nebezpečí pevných prachových částic suspendovaných v ovzduší nespočívá jen v jejich mechanických vlastnostech, nýbrž hlavně v kvantu adsorbovaných rizikových kontaminantů. Liang et al. identifikovali zhruba 90 organických sloučenin v podobě alkanů, PAHs, jejich alkyl derivátů, alkylbenzenů a alkanových kyselin vázaných na tuhé částice [1]. Jiní autoři popisují navíc přítomnost reakčních produktů zmíněných sloučenin a dalších extrémně toxických a persistentních polutantů [2, 3]. Tuhé částice jsou nosičem i řady anorganických látek, zvláště síranů, dusičnanů, amonných iontů, těžkých kovů, ale rovněž alergenů, plísní a mikroorganismů [4].

Výstupy epidemiologických studií přisuzují částicím suspendovaným v ovzduší nejen krátkodobé, nýbrž i dlouhodobé účinky, zejména při delší expozici. Krátkodobé efekty

se projevují ve formě mechanického poškození rohovky, ztíženého dýchání, zhoršování zdravotního stavu, poškození plicních tkání vedoucí až k fibrilaci plic aj. [5]. Dlouhodobé účinky spočívají ve zvýšeném výskytu bronchitid, kardiovaskulárních a reprodukčních poruch a při extrémní expozici i rakoviny hlavně respiračních orgánů [6].

Mezi výrazně toxické a persistentní polutanty adsorbované na suspendované tuhé částice náleží PAHs [7]. PAHs jsou spolu s částicemi absorbovány v plících a trávicím traktu a metabolizovány cestou polyfunkčního systému oxidáz. Experimentální studie prokazují, že PAHs jsou podezřelé z karcinogenních, mutagenních a teratogenních účinků [8]. Benzo[a]pyrene je dle klasifikace IARC zařazen do skupiny 1 jako prokázaný lidský karcinogen, cyklopenta[cd]pyren, dibenz[a,h]anthracen a dibenzo[a,l]pyren do skupiny 2A jako pravděpodobně karcinogenní pro člověka a jedenáct dalších PAHs do skupiny 2B jako možné lidské karcinogeny [9]. U.S. EPA začleňuje do skupiny B2 jako pravděpodobný lidský kacinogen s dostatečnými důkazy u zvířat sedm PAHs, včetně benzo[a]pyrene [10].

Zdravotní efekt tuhých částic je výrazně ovlivněn velikostí. Částice aerodynamického průměru  $d \, [\mu m] \in \langle 10; 100 \rangle$  jsou zachyceny v horních cestách dýchacích, nicméně i přesto mohou být pro lidské zdraví nebezpečné, zvláště obsahují-li těžké kovy [11]. Je to dáno jejich potenciálem tvorby reaktivní formy kyslíku a oxidačního stresu, který je příčinou poškození DNA a cytotoxicity [12]. Částice o průměru  $d \, [\mu m] \in (2.5; 10)$  pronikají do dolních cest dýchacích a zatěžují tak samočisticí schopnost plic. Částice, jejichž  $d \leq 2.5 \, \mu m$ , se usazují v plicích, blokují reprodukci buněk a snižují obranyschopnost dýchacího traktu [13].

Pozornost je v poslední době věnována zastoupení kontaminantů částic v závislosti na jejich velikosti, neboť pro ultra jemnou frakci velikosti  $d \le 0,1$  µm byla pozorována zvýšená zdravotní rizika [14]. Verma et al. se zabývali zkoumáním obsahu těžkých kovů, konkrétně Cr, Cd, Ni, Pb, Cu a Fe v jemné (PM<sub>1.8</sub> PM<sub>1</sub>, PM<sub>0.56</sub>, PM<sub>0.32</sub> a PM<sub>0.18</sub>) a ultra jemné (PM<sub>0.1</sub> a PM<sub>0.056</sub>) frakci částic v prostředí městské komunikace. Dospěli k závěru, že studované kovy jsou obsaženy v každé zkoumané frakci, přičemž rozložení koncentrace adsorbovaných kovů je funkcí nejen druhu kovu, nýbrž i ročního období, tedy teploty [11].

Di Fillippo et al. realizovali studii distribuce množství adsorbovaných PAHs a jejich nitroa methyl- derivátů jako funkci velikosti částic. Distribuci koncentrace adsorbovaných PAHs shledali unimodální, s modusem odpovídajícím PM<sub>0.4</sub>, zatímco pro nitro- a methyl- deriváty vykazovala distribuce bimodální profil s maximem pro 0.1 a 0.4 µm. Dále zjistili, že 18 % toxických organických sloučenin bylo obsaženo ve frakci PM<sub>0.1</sub> a 76 % v jemné frakci  $d [\mu m] \in \langle 0.18; 2.5 \rangle$ , přičemž pro deriváty PAHs byla distribuce ultra jemné frakce v letních měsících posunuta směrem k vyšším hodnotám [15]. K podobným závěrům dospěli japonští vědci, kteří zjistili, že distribuce adsorbovaných částic je bimodální s peaky 0.48-0.68 µm a 3.5-5.1 µm, zatímco distribuce koncentrace individuálních PAHs, včetně jejich sumy, vykazovala unimodální charakter s maximem v oblasti 0.48-0.68 µm [16]. Výsledky jiných studií však uvádějí, že na frakci menší než 3 µm je vázáno pouze 56-89% PAHs [17, 18].

V relaci k výše uvedeným nesrovnalostem se naše skupina rozhodla provést experiment s cílem stanovit a srovnat koncentrace vázaných individuálních PAHs včetně jejich sumy na částicích PM<sub>2.5-10</sub> a ve frakci PM<sub>2.5</sub>.

#### Použité metody, přístroje a chemikálie

Odběr vzorků z ovzduší probíhal po dobu 24 hodin středněobjemovým vzorkovačem Leckel MVS6 znázorněným na obr. 1. Částice byly zachyceny na filtru z křemenných vláken s průměrem filtru 47 mm (Milipore). Před odběrem byly filtry vyžíhány při teplotě 400°C, aby se odstranily organické látky, jež by mohly negativně ovlivnit výsledky analýz. K odběru bylo použito dvou vzorkovacích zařízení s různými průměry trysek, což dovolilo paralelně zachytit částice dvou různých aerodynamických průměrů. Po ukončení operace byly filtry

se vzorky zabaleny do Al-fólie, vloženy do polyethylenového sáčku a umístěny do chladicího boxu. Po převozu do laboratoře byly vzorky do doby analýzy uchovávány při teplotě -18°C.

PAHs zachycené na filtru byly extrahovány CH<sub>2</sub>Cl<sub>2</sub> o čistotě pro reziduální analýzu (Chromservis, ČR) v extraktoru fexIKA® vario control (IKA®-Werke GmbH & Co. KG, Německo). Kapalinový extraktor zobrazený na obr. 2 pracoval na principu levné alternativy Soxhletovy extrakce na fluidním loži za cyklicky se měnící teploty. V průběhu zahřívání se rozpustily PAHs adsorbované na filtru a během chladicí periody se vlivem vzniklého podtlaku extrakt nasál zpět do varné nádobky. Pórovitost vnitřního filtru FF1 aparatury činila 10-20 µm. Po každé extrakci byla zařazena čistící fáze extraktoru. Hodnoty teploty spolu s průběhem extrakční a čistící fáze jsou zachyceny v tab. 1.

Získaný extrakt byl zahuštěn stripováním dusíkem kvality N5 (SIAD S.p.A., Itálie) při teplotě 40 °C a tlaku proudu dusíku 70-140 kPa na objem 1 ml v zařízení TurboVap II (Zymark, USA) znázorněném na obr. 3. Zahuštěný extrakt byl převeden na zhruba 2 g suchého předčištěného silikagelu 60/80 (Merck, Německo), který byl žíhán tři dny při 400 °C a před použitím sušen 3 hodiny při 160°C.



Obr. 1 Středněobjemové čerpadlo LECKEL MVS6

Obr. 2 Extraktor fexIKA® Vario control

| Množství DCM<br>[ml] | Počet cyklů varu | Teplota zahřívání<br>[°C] | Teplota chlazení<br>[°C] |  |  |  |  |
|----------------------|------------------|---------------------------|--------------------------|--|--|--|--|
| 70                   | 6 x 20min        | 60                        | 30                       |  |  |  |  |
| 70                   | 2 x 20min        | 60                        | 30                       |  |  |  |  |

Tab. 1 Program pro extrakci a čistění extraktorem fexIKA® vario control

Do skleněné chromatografické kolony s vnitřním průměrem 10 mm byl vsypán silikagel upravený výše popsaným postupem do výšky 100 mm, zalit 10 ml n-hexanu pro organickou stopovou analýzu (Chromservis, ČR) a hladina n-hexanu odpuštěna do výšky 5 mm nad silikagel. Silikagel se vzorkem PAHs byl převeden do připravené kolony, která byla eluována 10 ml n-hexanu za účelem odstranění nepolárních interferujících alkanů a posléze čtyřikrát 5 ml CH<sub>2</sub>Cl<sub>2</sub> do nádobky TurboVapu, přičemž prvních 15 kapek bylo odstraněno. Následoval přídavek 0.5 ml toluenu a za stejných podmínek jako po extrakci filtru byl roztok zahuštěn stripováním dusíkem na objem 0.5 ml. V závěrečné fázi byl roztok doplněn toluenem na 1 ml, převeden do hnědé vialky objemu 2 ml a naspikován 10 µl p-terfenylu sloužícím jako vnitřní

standard ke stanovení PAHs. Připravené vzorky byly uloženy do chladničky a do doby stanovení PAHs, udržovány při teplotě pod 10°C za nepřístupu světla.

Koncentrace PAHs byly stanoveny plynovou chromatografií v kombinaci s hmotnostní spektrometrií užitím zařízení Shimadzu QP2010 znázorněném na obr. 4. K rozdělení PAHs v závislosti na jejich afinitě k zakotvené fázi sloužila křemenná kapilární kolona DB-EUPAH s vnitřním průměrem 0.25 mm, která dovolí podrobnější rozdělení PAHs, než stávající běžně užívané kolony. Zakotvená fáze o tloušťce vrstvy 0.25 µm je patentována firmou Agilent Technologies. Jako nosný plyn bylo užito helium kvality He 6.0, SIAD S.p.A., Itálie. V MS kvadrupólovém detektoru, kam z GC kolony PAHs postupně přicházely, se nárazem elektronu molekuly PAHs fragmentovaly a ionizovaly a dráha nabitých částic se zakřivila úměrně intenzitě magnetického pole kvadrupólu. Výstupem bylo hmotnostní spektrum, jehož intenzita je úměrná koncentraci každého PAH ve vzorku a profil (daný poměrem M/z jednotlivých peaků), charakterizující jeho identitu. Každý PAH bylo tedy možné identifikovat jednak na základě hmotnostního spektra a jednak na základě retenčního času, za nějž prošel kolonou.





Obr. 3 Zahušťovací zařízení TurboVap II

Obr. 4 Přístroj GC/MS Shimadzu QP2010

Analyty ke stanovení PAHs byly hodnoceny v SIM ("selected ion monitoring") módu, jež je citlivější než metoda "full scan". Kalibrační křivky byly sestrojeny pomocí standardních roztoků směsí PAHs, od výrobců Dr. Ehrenstorfer, Restek, Fluka a Supelco se stejnými koncentracemi každého PAH přítomného v příslušném standardu. Ze standardů byly připraveny kalibrační roztoky. Ke každé kalibrační úrovni byl p-terfenyl přidáván samostatně. K dávkování kalibračních roztoků a rozpouštědel byla aplikována elektronická pipeta eVol® XR, výrobce SGE, Austrálie s dávkovacími stříkačkami objemů 1 ml, 100 µl a 5 µl.

Výsledky odezev z měření kalibračních roztoků byly zpracovány pomocí statistického softwarového balíku QC.Expert<sup>™</sup>, modul "Kalibrace", jež je určen k vytváření kalibračních modelů pro lineární i nelineární kalibrační závislosti s možností automatické detekce linearity [19]. Díky užité metodě vážené regrese řeší tento modul i kalibrační modely s nekonstantní chybou, což je nutné zvláště při měření v blízkosti nuly, jelikož koncentrace PAHs v ovzduší jsou obvykle přítomny ve stopové kvantitě. Za těchto podmínek činila mez stanovení individuálních PAHs 0.02 ng m-3 s rozšířenou nepřesností ± 20%. Pokud byla koncentrace PAH nižší než mez stanovení, brala se při výpočtech v úvahu její 50% hodnota.

K posouzení závislosti naměřených hodnot koncentrací PAHs adsorbovaných na částicích frakcí PM<sub>10</sub> a PM<sub>2.5</sub> byl využit stejný softwarový balík QC.Expert<sup>™</sup>, modul "Porovnání dvou výběrů", párové porovnání [19]. Protože soubory naměřených koncentrací PAHs nevykazují normální rozdělení, byla k porovnání aplikována neparametrická metoda Spearmanova koeficientu pořadové korelace [20]. Předpokladem aplikace této metody je, aby oba soubory měly stejný počet dat, nesmí se zaměnit jejich pořadí a oba údaje o jednom měření, získané

typicky ve stejném časovém období, musí být na témže řádku. Spearmanův korelační koeficient rSp (PAH) pro každý ze sledovaných PAHs byl vypočten dle vztahu (1):

$$r_{Sp}(PAH) = 1 - \frac{6 \times \sum_{i=1}^{n} D_i^2(PAH)}{n \times (n^2 - 1)}$$
(1)

v němž  $D_i^2(PAH)$  představuje druhou mocninu rozdílu mezi pořadím hodnot koncentrace  $x_i$  (PAH) sledovaného PAH vázaného na částice PM<sub>10</sub> a hodnot koncentrace  $y_i$  (PAH) téhož PAH vázaného na částice PM<sub>2.5</sub> příslušné korelační dvojice a *n* je počet korelačních dvojic. Vypočtený koeficient  $r_{Sp}$  (PAH) se porovná s tabelovanými kritickými hodnotami Spearmanova korelačního koeficientu  $r_{Sp}$  ( $\alpha$ , *n*) pro kritickou oblast  $\alpha$  a počet korelačních dvojic *n*. Jestliže je |  $r_{Sp}$  (PAH) |>  $r_{Sp}$  ( $\alpha$ , *n*), koeficient pořadové korelace je významný na hladině významnosti  $\alpha$ . Je-li |  $r_{Sp}$  (PAH) | <  $r_{Sp}$  ( $\alpha$ , *n*) je závislost mezi oběma soubory dat na hladině významnosti  $\alpha$  nevýznamná [20].

## Výsledky a diskuze

Vzorky ovzduší byly odebírány v tunelu Mrázovka, Praha. Tunel je součástí městského okruhu, je dlouhý 1 260 m s rozdělením jízdních směrů do jednotlivých tubusů. Průměrná intenzita dopravy v místě odběru vzorků činila ve sledovaném období 2.3×104 vozidel den<sup>-1</sup> s podílem 96% osobních automobilů. Měření bylo realizováno formou týdenních odběrových kampaní s výjimkou roku 2013. Průtok vzorkovaného ovzduší činil 2.3 m<sup>3</sup> h<sup>-1</sup>. Analyzováno bylo sumárně 44 vzorků ovzduší a 3 blanky, jak je patrné z tab. 2.

Tab. 2 Přehled odebraných vzorků ovzduší a blanků v silničním tunelu Mrázovka

| Číslo<br>vzorku | Datum odběru | Aerodynamický<br>průměr částic<br>[µm] | Množství odebraného<br>vzduchu<br>[m <sup>3</sup> ] | Trvání odběru<br>[h] |
|-----------------|--------------|----------------------------------------|-----------------------------------------------------|----------------------|
| A-049_12        | 06. 06. 2012 | 2.5                                    | 54.99                                               | 23:55                |
| A-050_12        | 06. 06. 2012 | 10.0                                   | 55.00                                               | 23:55                |
| A-053_12        | 07. 06. 2012 | 2.5                                    | 55.18                                               | 24:00                |
| A-054_12        | 07. 06. 2012 | 10.0                                   | 55.20                                               | 24:00                |
| A-057_12        | 08. 06. 2012 | 2.5                                    | 55.17                                               | 24:00                |
| A-058_12        | 08. 06. 2012 | 10.0                                   | 55.21                                               | 24:00                |
| A-061_12        | 09. 06. 2012 | 2.5                                    | 54.98                                               | 23:55                |
| A-062_12        | 09. 06. 2012 | 10.0                                   | 55.03                                               | 23:55                |
| A-065_12        | 10. 06. 2012 | 2.5                                    | 54.98                                               | 23:55                |
| A-066_12        | 10. 06. 2012 | 10.0                                   | 55.02                                               | 23:55                |
| A-069_12        | 11. 06. 2012 | 2.5                                    | 54.62                                               | 23:45                |
| A-070_12        | 11. 06. 2012 | 10.0                                   | 54.64                                               | 23:45                |
| A-073_12        | 12. 06. 2012 | 2.5                                    | 53.83                                               | 23:25                |
| A-074_12        | 12. 06. 2012 | 10.0                                   | 53.86                                               | 23:25                |
| A-075_12        | 13. 06. 2012 |                                        |                                                     | Blank                |
| A-097_12        | 05. 09. 2012 | 2.5                                    | 55.26                                               | 24:02                |
| A-098_12        | 05. 09. 2012 | 10.0                                   | 55.30                                               | 24:02                |
| A-101_12        | 06. 09. 2012 | 2.5                                    | 55.17                                               | 24:00                |
| A-102_12        | 06. 09. 2012 | 10.0                                   | 55.21                                               | 24:00                |
| A-105_12        | 07.09.2012   | 2.5                                    | 55.56                                               | 24:10                |
| A-106_12        | 07.09.2012   | 10.0                                   | 55.59                                               | 24:10                |
| A-109_12        | 08. 09. 2012 | 2.5                                    | 54.98                                               | 23:55                |
| A-110_12        | 08. 09. 2012 | 10.0                                   | 55.02                                               | 23:55                |

| Číslo<br>vzorku | Datum odběru | Aerodynamický<br>průměr částic<br>[µm] | Množství odebraného<br>vzduchu<br>[m <sup>3</sup> ] | Trvání odběru<br>[h] |
|-----------------|--------------|----------------------------------------|-----------------------------------------------------|----------------------|
| A-113_12        | 09. 09. 2012 | 2.5                                    | 54.80                                               | 23:50                |
| A-114_12        | 09. 09. 2012 | 10.0                                   | 54.84                                               | 23:50                |
| A-117_12        | 10. 09. 2012 | 2.5                                    | 55.19                                               | 24:00                |
| A-118_12        | 10. 09. 2012 | 10.0                                   | 55.23                                               | 24:00                |
| A-121_12        | 11. 09. 2012 | 2.5                                    | 54.60                                               | 23:45                |
| A-122_12        | 11. 09. 2012 | 10.0                                   | 54.63                                               | 23:45                |
| A-123_12        | 12. 09. 2012 |                                        |                                                     | Blank                |
| A-138_12        | 28. 11. 2012 | 2.5                                    | 54.93                                               | 23:53                |
| A-139_12        | 28. 11. 2012 | 10.0                                   | 54.96                                               | 23:53                |
| A-142_12        | 29. 11. 2012 | 2.5                                    | 54.83                                               | 23:51                |
| A-143_12        | 29. 11. 2012 | 10.0                                   | 54.86                                               | 23:51                |
| A-146_12        | 30. 11. 2012 | 2.5                                    | 55.18                                               | 24:00                |
| A-147_12        | 30. 11. 2012 | 10.0                                   | 55.22                                               | 24:00                |
| A-150_12        | 01. 12. 2012 | 2.5                                    | 54.97                                               | 23:55                |
| A-151_12        | 01. 12. 2012 | 10.0                                   | 55.02                                               | 23:55                |
| A-158_12        | 03. 12. 2012 | 2.5                                    | 54.80                                               | 23:50                |
| A-159_12        | 03. 12. 2012 | 10.0                                   | 54.83                                               | 23:50                |
| A-162_12        | 04. 12. 2012 | 2.5                                    | 56.43                                               | 24:33                |
| A-163_12        | 04. 12. 2012 | 10.0                                   | 24.33                                               | 24:33                |
| A-164_12        | 05. 12. 2012 |                                        |                                                     | Blank                |
| A-003_13        | 20. 02. 2013 | 2.5                                    | 54.41                                               | 23:40                |
| A-004_13        | 20. 02. 2013 | 10.0                                   | 54.45                                               | 23:40                |
| A-007_13        | 21. 02. 2013 | 2.5                                    | 55.25                                               | 24:02                |
| A-008_13        | 21.02.2013   | 10.0                                   | 55.08                                               | 24:02                |

Sledována byla koncentrace 16 priortních PAHs dle U.S. EPA, z nichž benzo[a]pyren, benzo[a]anthracen, benzo[b]fluoranthen, benzo[k]fluoranthen, dibenz[a,h]anthracen, chrysen a indeno[1,2,3-cd]pyren jsou považovány za pravděpodobně karcinogenní pro člověka [21]. Nad rámec těchto PAHs byla sledována koncentrace 1-methylnaftalenu, benzo[e]pyrenu, 2-methylnaftalenu, 11H-benzo[c]fluorenu, benzo[j]fluoranthenu, 3-methylcholanthrenu, dibenz[a,h]akridinu a dibenz[a,j]akridinu, jež rovněž mohou vykazovat karcinogenní účinky na člověka [22]. V tomto článku jsou uvedeny výhradně výsledky měření koncentrací prioritních PAHs dle U.S. EPA, přičemž výsledky pro osm dalších PAHs a porovnání stupně korelace jejich adsorpce na částicích PM<sub>10</sub> a PM<sub>2.5</sub> jsou k dispozici v naší laboratoři.

Výsledky analýz PAHs vázaných na částice PM10 jsou prezentovány v tab. 3 a PAHs vázaných na částice PM2.5 v tab 4. V obou případech jsou výsledky vztaženy na objemovou jednotku vzduchu za standardních podmínek, tj, na teplotu 20 °C a tlak 101.325 kPa.

## Tab. 3 Výsledky analýz koncentrace PAHs vázaných na PM10 [ng m<sup>-3</sup>]

Nap = naftalen, Acy = acenafthylen, Ace = acenafthen, Flu = fluoren, Phe = fenanthren, Ant = anthracen, Fla = fluoranthen, Py = pyren, BaA = benz[a]anthracen, Chry = chrysene, BbF = benzo[b]fluoranthen,

| Vzorek   |      |      |      |      |      | ŀ    | Koncei | ntrace | individu<br>[ng m <sup>-3</sup> ] | iálních l | PAHs  |       |       |      |      |      | Suma<br>PAHs |
|----------|------|------|------|------|------|------|--------|--------|-----------------------------------|-----------|-------|-------|-------|------|------|------|--------------|
|          | Nap  | Асу  | Ace  | Flu  | Phe  | Ant  | Fla    | Ру     | BaA                               | Chry      | BbF   | BkF   | BaP   | DbA  | lpy  | BPe  |              |
| A-050_12 | 0.30 | 0.11 | 0.12 | 0.31 | 1.17 | 0.67 | 1.90   | 2.93   | 24.10                             | 25.72     | 16.58 | 18.51 | 12.47 | 4.26 | 3.27 | 3.14 | 115.56       |
| A-054_12 | 0.26 | 0.13 | 0.02 | 0.28 | 1.03 | 0.54 | 1.50   | 2.41   | 14.17                             | 16.34     | 13.46 | 15.01 | 10.14 | 3.12 | 2.38 | 2.31 | 83.1         |
| A-058_12 | 0.26 | 0.08 | 0.04 | 0.20 | 1.07 | 0.57 | 1.38   | 2.23   | 12.70                             | 14.21     | 16.81 | 19.15 | 13.28 | 4.89 | 4.07 | 3.54 | 94.48        |
| A-062_12 | 0.22 | 0.11 | 0.09 | 0.22 | 0.72 | 0.38 | 0.89   | 1.44   | 6.85                              | 7.73      | 11.69 | 10.82 | 8.91  | 3.16 | 2.48 | 2.16 | 57.87        |
| A-066_12 | 0.24 | 0.05 | 0.02 | 0.24 | 0.78 | 0.42 | 0.99   | 1.54   | 5.97                              | 6.95      | 12.19 | 13.79 | 10.07 | 3.35 | 2.99 | 2.50 | 62.09        |
| A-070_12 | 0.22 | 0.06 | 0.06 | 0.21 | 0.77 | 0.36 | 1.08   | 1.65   | 4.18                              | 4.67      | 10.69 | 11.92 | 8.68  | 2.67 | 2.24 | 2.25 | 51.71        |
| A-074_12 | 0.23 | 0.06 | 0.06 | 0.21 | 0.66 | 0.35 | 1.02   | 1.71   | 3.50                              | 3.91      | 12.25 | 13.50 | 10.17 | 3.36 | 3.04 | 2.65 | 56.68        |
| A-098_12 | 0.36 | 0.21 | 0.04 | 0.19 | 0.64 | 0.24 | 0.68   | 1.23   | 1.59                              | 1.99      | 6.66  | 7.11  | 5.53  | 1.98 | 1.75 | 1.61 | 31.81        |
| A-102_12 | 0.36 | 0.06 | 0.05 | 0.16 | 0.72 | 0.31 | 0.84   | 1.44   | 1.71                              | 1.99      | 8.29  | 9.07  | 6.98  | 2.65 | 2.04 | 2.06 | 38.73        |
| A-106_12 | 0.33 | 0.05 | 0.06 | 0.14 | 0.59 | 0.23 | 0.71   | 1.21   | 1.60                              | 1.91      | 6.71  | 7.28  | 6.10  | 2.90 | 2.56 | 2.87 | 35.25        |
| A-110_12 | 0.33 | 0.03 | 0.05 | 0.14 | 0.50 | 0.20 | 0.52   | 0.88   | 0.93                              | 1.19      | 4.94  | 5.14  | 4.47  | 1.85 | 1.61 | 1.46 | 24.24        |
| A-114_12 | 0.37 | 0.05 | 0.02 | 0.18 | 0.76 | 0.27 | 0.83   | 1.34   | 0.96                              | 1.19      | 5.67  | 6.11  | 5.91  | 2.37 | 2.00 | 1.78 | 29.81        |
| A-118_12 | 0.67 | 0.04 | 0.05 | 0.20 | 0.97 | 0.34 | 1.05   | 1.68   | 0.94                              | 1.22      | 5.94  | 7.11  | 5.69  | 2.76 | 2.29 | 1.98 | 32.93        |
| A-122_12 | 0.40 | 0.06 | 0.04 | 0.17 | 0.78 | 0.26 | 0.94   | 1.58   | 0.83                              | 0.91      | 5.59  | 6.13  | 4.94  | 2.48 | 1.79 | 1.69 | 28.59        |
| A-139_12 | 0.49 | 0.04 | 0.04 | 0.15 | 0.81 | 0.31 | 0.85   | 1.29   | 1.16                              | 1.50      | 6.62  | 6.65  | 6.02  | 2.46 | 2.16 | 2.16 | 32.71        |
| A-143_12 | 0.49 | 0.04 | 0.04 | 0.14 | 0.75 | 0.27 | 0.88   | 1.42   | 0.96                              | 1.16      | 6.80  | 6.87  | 6.32  | 3.07 | 2.42 | 2.21 | 33.84        |
| A-147_12 | 0.29 | 0.04 | 0.04 | 0.10 | 0.61 | 0.24 | 0.92   | 1.35   | 1.10                              | 1.44      | 5.15  | 5.29  | 4.96  | 2.14 | 2.24 | 2.06 | 27.97        |
| A-151_12 | 0.55 | 0.08 | 0.09 | 0.13 | 0.92 | 0.37 | 1.84   | 2.47   | 3.08                              | 3.73      | 7.94  | 3.64  | 7.70  | 3.38 | 3.77 | 3.35 | 43.04        |
| A-159_12 | 0.39 | 0.04 | 0.03 | 0.11 | 0.58 | 0.23 | 0.93   | 1.45   | 1.55                              | 1.87      | 5.09  | 4.58  | 4.88  | 2.15 | 2.40 | 2.13 | 28.41        |
| A-163_12 | 0.90 | 0.11 | 0.03 | 0.27 | 1.99 | 1.32 | 2.28   | 3.46   | 3.50                              | 4.23      | 16.15 | 16.54 | 16.18 | 9.07 | 7.34 | 6.28 | 89.65        |
| A-004_13 | 0.11 | 0.01 | 0.02 | 0.07 | 0.49 | 0.19 | 0.82   | 1.23   | 1.21                              | 1.43      | 3.62  | 3.52  | 3.42  | 1.89 | 1.85 | 1.64 | 21.52        |
| A-008_13 | 0.12 | 0.03 | 0.02 | 0.08 | 0.70 | 0.24 | 1.06   | 1.42   | 1.36                              | 1.65      | 3.76  | 3.63  | 3.72  | 2.23 | 2.03 | 1.74 | 23.79        |

BkF = benzo[k]fluoranthen, BaP = benzo[a]pyren, DbA = dibenz[a,h]anthracen, Ipy = indeno[1,2,3-cd]pyren, BPe = benzo[ghi]perylen

# Tab. 4 Výsledky analýz koncentrace PAHs vázaných na PM2.5 [ng m-3]

Nap = naftalen, Acy = acenafthylen, Ace = acenafthen, Flu = fluoren, Phe = fenanthren, Ant = anthracen, Fla = fluoranthen, Py = pyren, BaA = benz[a]anthracen, Chry = chrysene, BbF = benzo[b]fluoranthen, BkF = benzo[k]fluoranthen, BaP = benzo[a]pyren, DbA = dibenz[a,h]anthracen, Ipy = indeno[1,2,3-cd]pyren, BPe = benzo[ghi]perylen

| Vzorek   |      | Koncentrace individuálních PAHs<br>[ng m <sup>-3</sup> ] |      |      |      |      |      |      |       |       |       |       |       |      | Suma |      |       |
|----------|------|----------------------------------------------------------|------|------|------|------|------|------|-------|-------|-------|-------|-------|------|------|------|-------|
|          | Nap  | Асу                                                      | Ace  | Flu  | Phe  | Ant  | Fla  | Ру   | BaA   | Chry  | BbF   | BkF   | BaP   | DbA  | Іру  | BPe  | I ANS |
| A-049_12 | 0.29 | 0.05                                                     | 0.17 | 0.34 | 1.17 | 0.66 | 1.83 | 2.77 | 21.42 | 21.82 | 12.73 | 14.31 | 9.47  | 3.16 | 2.25 | 2.41 | 94.85 |
| A-053_12 | 0.28 | 0.08                                                     | 0.10 | 0.33 | 1.07 | 0.60 | 1.69 | 2.64 | 18.49 | 20.18 | 15.06 | 16.62 | 11.57 | 3.57 | 2.67 | 2.57 | 97.52 |
| A-057_12 | 0.32 | 0.13                                                     | 0.08 | 0.28 | 0.96 | 0.47 | 1.40 | 2.20 | 12.91 | 14.55 | 14.07 | 15.67 | 11.04 | 3.51 | 2.74 | 2.51 | 82.84 |
| A-061_12 | 0.23 | 0.09                                                     | 0.02 | 0.27 | 0.91 | 0.53 | 1.07 | 1.74 | 9.75  | 11.49 | 13.59 | 14.81 | 9.95  | 3.63 | 3.11 | 2.72 | 73.91 |
| A-065_12 | 0.21 | 0.08                                                     | 0.11 | 0.28 | 0.73 | 0.41 | 0.90 | 1.50 | 6.77  | 8.15  | 13.14 | 14.15 | 10.30 | 3.96 | 3.16 | 2.86 | 66.71 |
| A-069_12 | 0.24 | 0.04                                                     | 0.11 | 0.23 | 0.73 | 0.37 | 1.09 | 1.72 | 5.15  | 5.53  | 12.50 | 13.95 | 10.16 | 3.27 | 3.14 | 2.50 | 60.73 |
| A-073_12 | 0.22 | 0.06                                                     | 0.02 | 0.19 | 0.67 | 0.36 | 1.01 | 1.67 | 3.71  | 4.29  | 11.21 | 12.49 | 9.19  | 3.24 | 2.78 | 2.54 | 53.65 |
| A-097_12 | 0.31 | 0.05                                                     | 0.05 | 0.18 | 0.62 | 0.24 | 0.70 | 1.29 | 1.79  | 2.19  | 7.06  | 7.71  | 5.61  | 2.15 | 1.92 | 1.74 | 33.61 |
| A-101_12 | 0.32 | 0.03                                                     | 0.05 | 0.13 | 0.66 | 0.25 | 0.80 | 1.36 | 1.47  | 1.76  | 6.43  | 6.99  | 5.37  | 2.05 | 1.86 | 1.54 | 31.07 |
| A-105_12 | 0.48 | 0.02                                                     | 0.02 | 0.20 | 0.75 | 0.30 | 0.87 | 1.51 | 1.60  | 1.90  | 7.84  | 8.41  | 7.22  | 2.80 | 2.36 | 1.91 | 38.19 |
| A-109_12 | 0.53 | 0.04                                                     | 0.02 | 0.15 | 0.61 | 0.25 | 0.59 | 0.98 | 1.26  | 1.35  | 6.68  | 7.13  | 5.85  | 2.28 | 1.99 | 1.69 | 31.4  |
| A-113_12 | 0.39 | 0.05                                                     | 0.05 | 0.17 | 0.68 | 0.22 | 0.85 | 1.32 | 1.01  | 1.27  | 6.32  | 6.72  | 5.57  | 2.22 | 1.98 | 1.68 | 30.5  |
| A-117_12 | 0.52 | 0.05                                                     | 0.08 | 0.16 | 0.75 | 0.31 | 0.91 | 1.43 | 1.17  | 1.33  | 7.18  | 7.95  | 6.29  | 2.67 | 2.49 | 2.14 | 35.43 |
| A-121_12 | 0.45 | 0.05                                                     | 0.06 | 0.18 | 0.86 | 0.31 | 1.13 | 1.85 | 1.03  | 1.13  | 6.83  | 7.45  | 6.55  | 2.97 | 2.80 | 2.21 | 35.86 |

| Vzorek   |      | Koncentrace individuálních PAHs<br>[ng m <sup>-3</sup> ] |      |      |      |      |      |      |      |      |      |      |      |      | Suma |      |       |
|----------|------|----------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
|          | Nap  | Асу                                                      | Ace  | Flu  | Phe  | Ant  | Fla  | Ру   | BaA  | Chry | BbF  | BkF  | BaP  | DbA  | lpy  | BPe  | FADS  |
| A-138_12 | 0.55 | 0.04                                                     | 0.07 | 0.13 | 0.67 | 0.32 | 0.70 | 1.17 | 1.83 | 2.26 | 9.23 | 9.45 | 8.22 | 4.31 | 3.73 | 3.25 | 45.93 |
| A-142_12 | 0.40 | 0.06                                                     | 0.03 | 0.13 | 0.74 | 0.33 | 0.91 | 1.53 | 1.33 | 1.51 | 7.85 | 8.02 | 7.52 | 3.43 | 2.71 | 2.75 | 39.25 |
| A-146_12 | 0.24 | 0.05                                                     | 0.03 | 0.11 | 0.63 | 0.24 | 0.90 | 1.33 | 1.33 | 1.67 | 5.77 | 5.71 | 5.61 | 3.09 | 3.14 | 2.90 | 32.75 |
| A-150_12 | 0.51 | 0.08                                                     | 0.03 | 0.14 | 0.79 | 0.29 | 1.60 | 2.16 | 3.17 | 3.83 | 7.23 | 6.31 | 7.07 | 2.74 | 3.41 | 3.31 | 42.67 |
| A-158_12 | 0.45 | 0.04                                                     | 0.04 | 0.10 | 0.61 | 0.21 | 0.80 | 1.24 | 1.20 | 1.44 | 4.67 | 4.82 | 4.60 | 2.09 | 2.04 | 1.90 | 26.25 |
| A-162_12 | 0.47 | 0.07                                                     | 0.07 | 0.14 | 0.96 | 0.53 | 1.11 | 1.71 | 2.04 | 2.27 | 8.90 | 9.01 | 8.69 | 4.24 | 3.95 | 3.27 | 47.43 |
| A-003_13 | 0.21 | 0.01                                                     | 0.02 | 0.11 | 0.67 | 0.29 | 1.57 | 2.24 | 1.98 | 2.23 | 5.38 | 5.33 | 5.43 | 3.06 | 2.79 | 2.45 | 33.77 |
| A-007_13 | 0.15 | 0.47                                                     | 0.02 | 0.09 | 0.72 | 0.43 | 0.99 | 1.46 | 1.88 | 2.22 | 5.30 | 5.28 | 5.27 | 2.75 | 2.67 | 2.47 | 32.17 |

Získaná data sloužila k určení velikosti částic, na něž jsou PAHs přednostně navázány. K tomuto účelu byl použit Speamanův test párového porovnání, jehož výsledky jsou zaznamenány v tab. 5. Odtud je zřejmé, že pro většinu PAHs je závislost mezi jejich koncentracemi adsorbovanými na částice aerodynamického průměru PM<sub>10</sub> a PM<sub>2.5</sub> statisticky velmi vysoce významná (označeno s\*\*\*) s pravděpodobností  $p < 10^{-3}$ , ponejvíce ale  $p < 10^{-5}$ , přičemž p značí pravděpodobnost že testovaná statistika se nachází v kritickém oboru  $\alpha$ . Zkoumaná korelace v případě dibenz[a,h]anthracenu ( $p \approx 8.12 \times 10^{-3}$ ), pyrenu ( $p \approx 2.09 \times 10^{-3}$ ) a benzo[ghi]perylenu ( $p \approx 5.27 \times 10^{-3}$ ) byla shledána jako statisticky vysoce významná (s\*\*). Výjimku tvoří pouze indeno[1,2,3-cd]pyren s  $p \approx 6.10 \times 10^{-2}$ , acenapfhylen, kde  $p \approx 7.66 \times 10^{-2}$ a acenaphthen s  $p \approx 7.14 \times 10^{-1}$ . u nichž je zmíněná závislost statisticky nevýznamná (ns). Tuto anomálii lze vysvětlit tím, že naměřené koncentrace zmíněných uhlovodíků se pohybují v okolí meze stanovitelnosti, mnohdy i pod ní, kde je chyba stanovení vyšší. S tímto tvrzením koresponduje i relevantně častěji naměřená koncentrace acenafthenu na hranici meze stanovitelnosti 0.02 ng m<sup>-3</sup> ve srovnání s acenafthylenem a v relaci k tomu řádově vyšší pravděpodobnost odpovídající kritickému oboru  $\alpha$  pro acenafthen. Pro indeno[1,2,3-cd]pyren byla naměřena koncentrace podstatně nad úrovní meze stanovitelnosti, čemuž odpovídá i nižší pravděpodobnost výskytu koncentrací v kritickém oboru hodnot.

V případě indeno[1,2,3-cd]pyrenu se závislost mezi koncentracemi vázanými na tuhé částice PM<sub>10</sub> a PM<sub>2.5</sub> pohybuje na hranici významnosti (s\*) a nevýznamnosti (ns). Tento fakt může být spojen s nejistotou, že se peaky indeno[1,2,3-cd]pyrenu a dibenz[a,h]anthracenu v chromatogramu částečně překrývají.

Z výše uvedených zjištění je logické, že také sumární koncentrace PAHs vázaných na částice  $PM_{10}$  a  $PM_{2.5}$  vykazuje statisticky vysoce těsnou korelaci (s\*\*\*) s odpovídající  $p \approx 1.10 \times 10^{-6}$ , jak je současně zřejmé z obr. 5.

#### Tab. 5 Míra korelace koncentrací PAHs vázaných na částicích PM10 a PM2.5

Nap = naftalen, Acy = acenafthylen, Ace = acenafthen, Flu = fluoren, Phe = fenanthren, Ant = anthracen, Fla = fluoranthen, Py = pyren, BaA = benz[a]anthracen, Chr = chrysen, BbF = benzo[b]fluoranthen, BkF = benzo[k]fluoranthen, BaP = benzo[a]pyren, DbA = dibenz[a,h]anthracen, Ipy = indeno[1,2,3-cd]pyren, BPe = benzo[ghi]perylen.

Korelace: ns = statisticky nevýznamná; s\* = statisticky významná; s\*\* = statisticky vysoce významná; s\*\*\* = statisticky velmi vysoce významná.

| Porovnávané průměry | Počet  | Spearman <sup>ů</sup> v karolažní kaoficiant r   | Stupeň   |
|---------------------|--------|--------------------------------------------------|----------|
| prachových částic   | dvojic | Spearmanuv korelacili koelicient r <sub>Sp</sub> | korelace |

| PM <sub>10</sub>              | PM <sub>2.5</sub>              | n  | Hodnota<br>r <sub>Sp</sub> (PAH) | Kritická hodnota<br>r <sub>S</sub> ( <i>α</i> =0.05, <i>n</i> ) | Kritická hodnota<br>r <sub>Sp</sub> ( <i>α</i> =0.01, <i>n</i> ) | Kritická hodnota<br>r <sub>Sp</sub> ( <i>a</i> =0.001, <i>n</i> ) |      |
|-------------------------------|--------------------------------|----|----------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|------|
| Nap PM <sub>10</sub>          | Nap PM <sub>2.5</sub>          | 22 | 0.8498                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| Acy PM <sub>10</sub>          | Acy PM <sub>2.5</sub>          | 22 | 0.4009                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | ns   |
| Ace PM <sub>10</sub>          | Ace PM <sub>2.5</sub>          | 22 | - 0.0488                         | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | ns   |
| Flu PM <sub>10</sub>          | Flu PM <sub>2.5</sub>          | 22 | 0.8004                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| Phe PM <sub>10</sub>          | Phe PM <sub>2.5</sub>          | 22 | 0.7662                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| Ant PM <sub>10</sub>          | Ant PM <sub>2.5</sub>          | 22 | 0.7518                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| Fla PM <sub>10</sub>          | Fla PM <sub>2.5</sub>          | 22 | 0.7354                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| Py PM <sub>10</sub>           | Py PM <sub>2.5</sub>           | 22 | 0.6199                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S**  |
| BaA PM <sub>10</sub>          | BaA PM <sub>2.5</sub>          | 22 | 0.9147                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| Chr PM <sub>10</sub>          | Chr PM <sub>2.5</sub>          | 22 | 0.9158                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| BbF PM <sub>10</sub>          | BbF PM <sub>2.5</sub>          | 22 | 0.8690                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| BkF PM <sub>10</sub>          | BkF PM <sub>2.5</sub>          | 22 | 0.8868                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| BaP PM <sub>10</sub>          | BaP PM <sub>2.5</sub>          | 22 | 0.8167                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |
| DbA PM <sub>10</sub>          | DbA PM <sub>2.5</sub>          | 22 | 0.5562                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S**  |
| Ipy PM <sub>10</sub>          | Ipy PM <sub>2.5</sub>          | 22 | 0.4063                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | s*   |
| BPe PM <sub>10</sub>          | BPe PM <sub>2.5</sub>          | 22 | 0.5734                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S**  |
| Suma<br>PAHs PM <sub>10</sub> | Suma<br>PAHs PM <sub>2.5</sub> | 22 | 0.8340                           | 0.4060                                                          | 0.5210                                                           | 0.6420                                                            | S*** |



Obr. 5 Porovnání sumy koncentrací PAHs adsorbovaných na tuhých částicích

## PM10 a PM2.5

Protože frakce  $PM_{2.5}$  je zcela obsažena ve frakci  $PM_{10}$  a závislosti koncentrací individuálních PAHs adsorbovaných na částice  $PM_{10}$  a  $PM_{2.5}$  jsou vysoce těsné, lze učinit závěr, že všechny PAHs jsou adsorbovány téměř výhradně na částice s aerodynamickým průměrem  $d \le 2.5 \mu m$ , zatímco na frakci  $PM_{2.5-10}$  nejsou PAHs vázány prakticky vůbec.

Analogické výstupy byly získány i pro osm dalších PAHs podezřelých z pravděpodobných karcinogenních účinků na člověka. Výjimku tvořil výhradně dibenz[a,h]akridin, jehož koncentrace v ovzduší kolísaly opět jen nepatrně nad mezí stanovitelnosti.

#### Závěr

Byly vyšetřovány koncentrace adsorbovaných individuálních PAHs, včetně jejich sumy, na tuhých částicích PM<sub>2.5-10</sub> a analogická koncentrace na částicích PM<sub>2.5</sub>. Za tímto účelem byly ve třech týdenních a jedné dvoudenní kampani odebrány vzorky ovzduší v pražském tunelu Mrázovka, kde se daly předpokládat zvýšené emise z dopravy. Vzorky 22 párových frakcí PM<sub>10</sub>, a PM<sub>2.5</sub> byly odebírány paralelně za stejných podmínek. V laboratoři byly zachycené částice extrahovány CH<sub>2</sub>Cl<sub>2</sub>, extrakty s obsahem PAHs po eliminaci interferujících nepolárních alkanů extrakcí n-hexanem zahuštěny a obsah individuálních PAHs stanoven plynovou chromatografií v kombinaci s hmotnostní spektrometrií (GC/MS).

Koncentrace singulárních párů každého PAH byly testovány neparametrickou metodou Spearmanova koeficientu pořadové korelace. Na hladině významnosti p < 0.01 bylo prokázáno, že zkoumané individuální PAHs, včetně jejich sumy, jsou adsorbovány téměř výhradně na frakci PM<sub>2.5</sub>. Výjimku tvořil acenafthylen a acenafthen, patrně proto, že se jejich koncentrace pohybovaly v okolí meze stanovitelnosti, kde lze očekávat vyšší chybu měření.

Hodnoceno bylo sumárně šestnáct prioritních PAHs dle U.S. EPA a dalších osm PAHs, jež jsou podezřelé z pravděpodobných karcinogenních efektů pro člověka. Výstupy zjištěné těchto osm uhlovodíků nejsou prezentovány v tomto příspěvku, ale jsou dostupné jsou v naší laboratoři a vykazují analogický charakter jako pro prioritní PAHs sledované U.S. EPA.

Dosažené výsledky se shodují se závěry Di Filippa et al. [15] a Kawanaky, et al. [16] spíše než s výstupy prací Kertész-Sáringera et al. [17] a Alvese et al. [18]. V následujícím období předpokládáme experimenty rozšířit a stanovit distribuci koncentrací individuálních PAHs a jejich sumy ve frakcích v rozmezí 5-10 nm v oblasti jemných a ultra jemných částic, tedy v intervalu aerodynamického průměru tuhých částic d [µm]  $\in \langle 0.006; 2.5 \rangle$ .

#### Použitá literaura

- Liang, F. et al. The Organic Composition of Diesel Particulate Matter, Diesel Fuel and Engine Oil of a Non-Road Diesel Generator, *Journal of Environmental Monitoring*, 2005, 7, 983-988.
- [2] Fang, G. et al. Ambient Suspended Particulate Matters and Related Chemicals Species Study in Central Taiwan, Taichung during 1998-2001, Atmospheric Environment, 2002, 36, 1021-1928.
- [3] Huzlik, J., Licbinsky, R., Durcanska, D. Polychlorinated Dibenzodioxins and Dibenzofurans Emissions from Transportation. *Komunikacie*, 2011, 13, (3), 41-47.
- [4] Pitts, J. N. et al. Atmospheric Reactions of Polycyclic Aromatic Hydrocarbons: Facile Formation of Mutagenic Derivates. *Sciences*. 1978, 202, 515-519.
- [5] Cerdeira et al. Seasonality and Air Quality Effect in Health. In Proceedings of the 5<sup>th</sup> WSEAS International Conference on Environment, Ecosystems and Development. Venice: WSEAS, 2006, 355-362.
- [6] Peters A. et al. Associations between Mortality and Air Pollution in Central Europe. *Environmental Health Perspectives*, 2000, 108, 283-287.
- [7] Bozek, F. et al. Genotoxic Risk for Population in Vicinity of Traffic Communication Caused by PAHs Emissions. WSEAS Transactions on Environment and Development, 2010, 6, (3), 186-195.

- [8] Boström, C., et al. Cancer Risk Assessment, Indicators, and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air. *Environmental Health Perspectives*, 2002, 110, 451-488.
- [9] International Agency for Research on Cancer (IARC). Agents Classified by the IARC Monographs, Volumes 1–111. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans [online]. Last update: February 18, 2015. [Quoted 2015-02-26]. URL: <a href="http://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf">http://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf</a>>.
- [10] United States Environmental Protection Agency (U.S. EPA). Guidelines for Carcinogen Risk Assessment. 51 FR 33992-34003. Washington, D.C.: U.S. EPA, 1986.
- [11] Verma, M. K. et al. The Traffic Linked Urban Ambient Air Superfine and Ultrafine PM<sub>1</sub> Mass Concentration, Contents of Pro-Oxidant Chemicals, and Their Seasonal Drifts in Lucknow, India, *Atmospheric Pollution Research*, 2014, 5, 677-685.
- [12] Strak, M. et al. Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Potential. *Environmental Health Perspectives*, 2012, 120, 1183-1189.
- [13] Kreyling, W. G., Semmler–Behnke, M., Moller, W. Ultrafine Particle-Lung Interactions: Does Size Matter? *Journal of Aerosol Medicine–Deposition Clearance and Effects in the Lung.* 2006, 19, 74-83.
- [14] Pope, C. A., Dockery, D. W., Schwartz, J. Review of Epidemiological Evidence of Health Effects of Particulate Air Pollution, *Inhalation Toxicology*, 1995, 7, 1-18.
- [15] Di Filippo, P. et al. Concentrations of PAHs, and Nitro- and Methyl- Derivatives Associated with a Size-Segregated Urban Aerosol, *Atmospheric Environment*, 2010, 44, (23), 2742-2749.
- [16] Kawanaka, Y. et al. Size Distribution of Mutagenic Compounds and Mutagenicity in Atmospheric Particulate Matter Collected with Low-Pressure Cascade Impactor, *Atmospheric Environment*, 2004, 38, (14), 2125-2132.
- [17] Kertész-Sáringer, M. Mészáros, E., Várkonyi T. On the Size Distribution of benzo[a]pyrene Containing Particles in Urban Air. *Atmospheric Environment*, 1971, 5, 429-431.
- [18] Alves, C. A., Pio, C. A., Duarte, A. C. Particle Size Distributed Organic Compounds in a Forest Atmosphere. *Science & Technology*, 2000, 34, 4287-4293.
- [19] Kupka, K. QC Expert. Interaktivní statistická analýza dat. [Uživatelský manuál]. Pardubice, 2010.
- [20] Weathington, B. L., Cunningham, C. J. L., Pittenger, D. J. Understanding Business Research, 1<sup>st</sup> Ed. Hoboken: John Wiley & Sons, Inc., 2012, pp. 265-266; 454.
- [21] United States Environmental Protection Agency (U.S. EPA). Documentation of 7-PAH and 16-PAH National Emission Estimates. Appendix B. Washington, D.C.: U.S. EPA, 1998, p. B-2.
- [22] National Toxicology Program (NTP), *Report on Carcinogens*. 11<sup>th</sup> Ed. Washington, DC: Public Health Service, US Department of Health and Human Services, 2005.