

Možnosti stanovení složek bioplynů, rozpouštědel a degradačních produktů polymerů plynovou chromatografií s detekcí ve vakuové UV oblasti

Ing. Tomáš Korba AMEDIS, Praha

The Commercialization of Light

Overview of Molecular Spectroscopy

Vacuum Ultraviolet Detector for GC

Schug et al., Anal. Chem. 2014, 86, 8329-8335.

VUV: A Gap in The Analytical Toolbox

"The excitation <u>energies associated with</u> electrons forming <u>most single bonds are</u> sufficiently high that absorption occurs in the so-called <u>vacuum</u> <u>ultraviolet</u> region (λ <185nm), where components in the atmosphere also absorb strongly. <u>Because of</u> <u>experimental difficulties associated with the</u> <u>vacuum ultraviolet region, most</u> <u>spectrophotometric investigations of organic</u> <u>compounds have involved longer wavelengths than</u> <u>185nm</u>."

> <u>Principals of Instrumental Analysis,</u> by Douglas Skoog, Sixth Edition, 2006

Characteristics of VGA-100 (VGA-101)

- Universal and selective detection
- Unique, class similar spectra
- Optical differentiation of isomers
- Deconvolution of coeluting analytes
- Automated classification and speciation of mixtures
- Good quantitative performance

Permanent gas analysis

Thermal runaway of Li-ion and Li-M batteries

- Universal and selective detection
- Unique, class similar spectra
- **Optical differentiation of isomers**
- **Deconvolution of coeluting analytes**
- Automated classification and speciation of mixtures
- Good quantitative performance

Alkanes vs. Aromatics 1.20 Naphthalenes Linear Alkane Monoaromatic (210-240 nm) (180-200 nm) (125-160 nm) Benzene 1.00 Octane Normalized Absorbance Toluena

Note: The absorbance of e.g benzene at 180 nm is 10 000 more intense than at the typical 254 nm in HPLC

Bai et al., Revised

0.20

0.00

Library search and Unambiguous Compound Identification

No ghost components in the library match list

Similar But Very Distinct

Visual similarities are easily distinguished in the fitting routine; minor differences are significant

The chi-squared distribution is the distribution of a sum of the squares of *k* independent standard normal random variables The chi-squared distribution is used in the common tests for goodness of fit of two criteria of gualitative data,

- Universal and selective detection
- Unique, class similar spectra
- Optical differentiation of isomers
- (Spectral) Deconvolution of coeluting analytes
- Automated classification and speciation of mixtures
- Good quantitative performance

Polychlorinated biphenyls in Aroclor mixtures

Qiu et al., J. Chromatogr A 2017, 1490, 191-200.

Deconvolution

- Total absorption is proportional to the product of the concentration and the absorption cross section
- Co-elution is a sum of these products
- Linear regression allows for easy deconvolution of the compound concentrations; even for co-eluting compounds

Spectral Deconvolution of m&p Xylene

Fast GC-VUV Analysis of Terpene Isomers Additional selectivity which makes chromatographic separation less stringent

Summary:

- Terpenes have VUV spectra that are distinct
 - ø Includes structural isomers and co-eluting analytes
- VUV spectral identification of terpene isomers allows the chromatographic compression of GC runtimes
 - ø Can shorten GC runtimes by 2 3X or more
- Natural and forced co-elutions are deconvolved by VUV software
 - ø Eliminates inaccuracy inherent to dropping vertical integration lines to quantitate

- Universal and selective detection
- Unique, class similar spectra
- Optical differentiation of isomers
- Deconvolution of coeluting analytes
- Automated classification and speciation of mixtures (compositional analysis
- Good quantitative performance

Time Interval Deconvolution (TID)

PIONA analysis of finished gasoline (ASTM D8071)

Walsh et al., Anal. Chem. 2016, 88, 11130 - 11138.

PIONA Compound Characterization using VUV PIONA+

- Compositional Analysis of gasoline type samples
- Each PIONA compound class displays distinct spectral features
 - ø Enables straightforward compound class identification and quantitation
- PIONA compounds can be speciated through C6, and class identification >C6 using VUV PIONA⁺
 - ø Flexibility to vary chromatographic conditions
 - Ø Specific analytes such as individual oxygenates or aromatics belonging to the BTEX complex

- ASTM Method D8071 provides information that historically required the use of several ASTM methods or more comprehensive methods.
 - Ø A single-column GC-VUV separation method with a total runtime of <u>34 minutes</u>.
 - ø ASTM approved for PIONA compound analysis in finished gasoline
 - ø No special setups, traps, pre-column tuning, or calibration requirements
 - ø Automated VUV PIONA+ analysis and reporting

Group plus Compound Identification

Name Current Run File C'Users/Usec CodmanDe VI.US (13 Report File C/Users/Usec CodmanDe Mass % Volume % Amount Response Mass % Volume % Amount Amount C1 0 N A P I O N A C2 0 0.3821 0.4760 Category Mass % Volume % Amount C3 2.1306 5.563 3.3453 0.3940 Napthane 11.92976 Napthane 11.92976 C3 1.8271 6.4319 2.3875 0.3114 Ethyl Acould 0.5928 16.0 0.05828 0.3141 16.9228 16.0 0.05828 0.05828 0.05828 0.0583 0.0314 Ethyl Acould	1			Sta	tus Results fill C \Users\U	e saved: lack Cochran\E	Gasoline 87 (Octane Nu	mber	ze Report 0005.V	UV_R		V		
Report File CLUbers/Lack Cochran/Des/top/PIONA Plas/Gasoline 87 D8071 VUV Analyze Report 0005 VUV_R Velow Report Response Mass % Volume % Amount P 0 A Base % Calegory Mass % Amount C0 0 A Base % Calegory 9.513 Calegory 9.513 C2 1.5294 0.3821 0.4760 0.048 1.0094 1.0094 1.0094 C3 1.5294 0.3821 0.4760 0.3141 1.0094 1.0094 0.0000 C3 1.9071 6.4352 3.3807 1.3755 0.3141 1.0094 0.0000 C3 0.9377 5.3149 0.9597 2.5442 4.5316 Methanol 0.0000 C4 0.1592 0.0244 0.4383 2.80987 1.4170 5.7378 0.7317 2.7384 0.2441 1.4398 2.80977 C11 0.1383 0.8253 0.33141 1.1470 Viewnee 0.7317 2.7364 0.5316 <td< th=""><th>nalyze</th><th colspan="2">Results</th><th colspan="2">Current Run File C.U</th><th>lack CochraniE</th><th>)eL</th><th colspan="2"></th><th colspan="3"></th><th></th><th colspan="2">VI.0.9 (1551)</th></td<>	nalyze	Results		Current Run File C.U		lack CochraniE)eL							VI.0.9 (1551)	
Response Moss % Volume % Amount P 0 N A Category Mass % Category Mass % Amount C2 0 0.4780 0.9430 0.9542 3.9453 0.9940 0.9542 3.9453 0.9940 0.9542 3.9453 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9941 0.9940 0.9940 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941			0.00	and leak Car	han DaaldariD		alias 07 D0071/Casalias 07 D00	7418 Kidenhan Deno	4 0005 10 01		1			1	
Response Mass % Volume % Amount P I O N A Galgory Mass % Amount C1 C2 C3 C4 C3 24.770 C4 25.913 C4 24.770 C4 26.913 C4 26.913 C4 C5 21.306 5.0593 3.9453 0.0448 C6 28.073 C4 12.0796 Naphthene 11.098 Naphthene 11.098 Naphthene 11.098 Naphthene 10.998 Naphthene 10.998 Naphthene 10.998 Naphthene 10.998 Naphthene 0.0000 EM Naphthene 0.2000 Naphthene 0.2000 <td< th=""><th></th><th>Repo</th><th>ITFILE C.IU</th><th>Sers Dack Coc</th><th>nranweskiope</th><th>IONA FIUSIGA</th><th>soline or Dour troasoline or Dou</th><th>/ 1 YOV Analyze Repo</th><th>11 0005.909_</th><th>ĸ</th><th></th><th>Vie</th><th>ew Report</th><th></th></td<>		Repo	ITFILE C.IU	Sers Dack Coc	nranweskiope	IONA FIUSIGA	soline or Dour troasoline or Dou	/ 1 YOV Analyze Repo	11 0005.909_	ĸ		Vie	ew Report		
P I O N A C1 Category Mass % Image: Category			Response				Mass %		V	olume %			Amou	nt	
C0			P	1	0	N	A		9	Category	4	lass %	A		
C1	1	C0						Paraffin			3	9.5133			
C2 C2 C1 12 0796 C4 15 2240 0.3821 0.4780 0.0948 C5 21306 50583 3.4453 0.0948 8282774 C6 18071 6.4382 3.3897 1.3756 0.3114 0.0000 C6 18071 5.2484 2.4679 2.3877 3.7044 10.5588 C7 1.4871 5.2484 2.4679 2.3877 3.7044 10.5588 C10 0.3381 1.8927 0.4439 1.4995 5.0987 0.5954 C11 0.1592 0.6234 0.0441 1.4383 2.9008 1.4008 0.9595 C13 0.1439 0.3141 1.1470 1.4008 0.9253 0.3795 C14 0.6855 0.3190 0.0253 0.9375 0.9375 0.9376 C15 0.0865 0.3190 0.0253 0.9375 0.9376 0.93785 C15 0.0865 0.3190 0.0253 0.9375 0.9376 0.9439 C15 0.5085 0.3190 0.0253 0.9428		C1						Isoparaffin			2	8.4770			
C3 C5 1.5284 0.3821 0.4760 11.0598 C5 2.1306 5.0563 3.9453 0.0948 0.0948 C6 1.8071 6.4862 3.3867 1.3755 0.3114 0.0900 C7 1.4671 5.2484 2.4679 2.3877 3.7044 10.5528 C8 0.9957 5.0149 0.9567 2.3877 3.7044 10.5528 C9 0.7317 2.3738 0.5346 1.4652 9.5559 Naphthalenes 0.2516 C10 0.3381 1.6827 0.4339 1.4199 5.9697 Toluene 3.7044 C12 0.1470 0.37315 0.0853 0.3141 1.1470 Xitana C13 0.1638 0.9513 0.3141 1.470 Xitana 0.8253 C14 0.0685 0.3180 0.0253 Cita 0.5362 3.9008 C15 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Mantees 0.3180 0.0253 C14 0.0685 0.3180 <	1	C2						Olefin				2.0796			
C4 1.5284 0.3423 0.0440 28.2774 C5 2.1306 5.0583 3.3453 0.0948 0.0000 C6 1.9071 6.4382 3.3967 1.3755 0.3114 10.5528 C9 0.7317 5.2484 2.4570 2.3877 3.7044 10.5528 C9 0.7317 2.3738 0.5346 1.4652 9.50937 0.6364 0.6954 C11 0.1592 0.6224 0.0441 1.4383 2.9008 Tolure 3.3704 C12 0.16480 0.9533 0.3141 1.1470 Ethylnaphtalenes 0.9253 C13 0.1080 0.953 0.3141 1.1470 Ethylnaphtalenes 3.9008 C15 Total 9.5113 28.4771 12.0796 11.0598 28.2774 Momatic Markie Chi/2 deita (%) Abs Threshold 0.9253 C15 Total 9.5113 28.4771 12.0796 11.0598 28.2774 Momatic Marke Spectra 0.3265 0.3141 1.1470 C16 0.00853 0.3180 </td <td></td> <td>C3</td> <td>4 500.4</td> <td></td> <td></td> <td></td> <td></td> <td>Naphthene</td> <td></td> <td></td> <td>1</td> <td>1.0598</td> <td></td> <td></td>		C3	4 500.4					Naphthene			1	1.0598			
C0 2.1.309 5.0505 0.0046 0.0000 C7 1.4871 5.4362 3.3967 3.7744 0.0001 C8 0.0057 5.0148 0.9587 2.5842 4.5316 0.7998 C9 0.7317 2.3728 0.5346 1.4652 9.5859 0.8967 0.8967 C110 0.3381 1.5927 0.4439 1.4499 5.0987 0.8967 C12 0.1470 0.32781 0.0413 1.4999 2.9807 0.8253 C13 0.0853 0.3141 1.470 Xylenes 0.6054 C14 0.0885 0.3180 0.0253 0.9375 Xylenes 3.9008 C15 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Matchiatene 0.6225 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Matchiatene 0.6225 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Matodia 0.6225 <td cols<="" td=""><td>1</td><td>C4</td><td>1.5284</td><td>0.3821</td><td>0.4780</td><td>0.00.10</td><td></td><td>Aromatic</td><td></td><td></td><td>2</td><td>8.2774</td><td></td><td></td></td>	<td>1</td> <td>C4</td> <td>1.5284</td> <td>0.3821</td> <td>0.4780</td> <td>0.00.10</td> <td></td> <td>Aromatic</td> <td></td> <td></td> <td>2</td> <td>8.2774</td> <td></td> <td></td>	1	C4	1.5284	0.3821	0.4780	0.00.10		Aromatic			2	8.2774		
C0 1.49/1 0.436/2 3.396/2 1.4700 0.3114 0.03114 C7 1.48/1 5.248/2 2.4579 3.7044 0.5898 0.7317 2.3738 0.5346 1.4652 9.5695 C10 0.3381 1.95927 0.439 1.4452 9.5695 0.6654 C11 0.1592 0.6234 0.0441 1.4383 2.9608 0.9375 0.3114 C12 0.1470 0.3381 1.9913 0.3314 1.1470 0.6225 C13 0.1088 0.9513 0.0253 0.9375 0.9375 0.9375 C15 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Mashtistime (min) Methods Chi*2 detta (%) Abs Threshold O.9275 C15 Total 9.513 28.4771 12.0796 11.0598 28.2774 Methods Chi*2 detta (%) Abs Threshold 0.925 C14 0.0685 0.3180 0.0253 0.0101 0.0010		05	2.1306	5.0583	3.6453	0.0948	0.0444	Methanol				0.0000			
Gr 1.8071 3.74809 2.48079 2.3877 3.7044 G8 0.9067 5.0149 0.9857 2.5642 4.5316 0.9951 G1 0.7317 2.3738 0.5346 1.4652 9.5859 0.9977 G11 0.1592 0.6234 0.4439 1.4199 5.0987 0.1419 0.3114 0.3114 G12 0.1470 0.3781 0.0853 0.3141 1.1470 0.3781 0.0853 0.3141 1.1470 G13 0.0865 0.3180 0.0253 0.9375 0.9375 0.6225 3.9008 C15 Total 9.5133 28.4771 12.0796 11.0598 28.2774 0.6225 Mass % Report for PIONA and Select Individual Components 0.6225 Nylenes 3.9008 0.914 0.0216 0.0216 0.0216 Mass % Report for PIONA and Select Individual Components 0.6225 0.010 0.021 Mass % Report for PIONA and Select Individual Components 0.0216 0.0010 0.0216 0.0010 0.0010 0.0010 0.0010 0		60	1.9071	0.4302	3.3907	1.3/50	2,2044	Ethyl Alcohol	1			0.5928			
No Output College College <thcollege< th=""> College <t< td=""><td></td><td>C7</td><td>0.0067</td><td>5.2484</td><td>2.4679</td><td>2.38//</td><td>3./044</td><td>Iso-octane</td><td></td><td></td><td></td><td>0.7898</td><td></td><td></td></t<></thcollege<>		C7	0.0067	5.2484	2.4679	2.38//	3./044	Iso-octane				0.7898			
C13 0.3341 1.952 0.4340 1.4052 9.5035 C11 0.1592 0.6234 0.0441 1.4383 2.9608 C12 0.1470 0.3781 0.0853 0.3141 1.1420 C13 0.1085 0.3181 0.0853 0.3141 1.1420 C14 0.0885 0.3180 0.0253 0.3375 0.9375 C15 0.1380 0.0253 0.3375 0.9375 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Masses % Report for PIONA and Select Individual Components Is Parameters Analysis Time (min) Methods Tiered Search Limit Chi*2 Min Chi*2 delta (%) Abs Threshold Use Peak Detection Analyze Spectra Riv Ima Background Indo 3.000 DHA Chromatogram Filter Chi*2 Max 8000 0.0010 Use Initial Analyze Spectra 25 Ind 1.500 Time Step 0.020 Oxygenates Oxygenates 0.0003 DHA 25		C0	0.7217	2 3728	0.5346	1.4652	0.6950	Mathyloachth	alanae			0.6054			
C11 0.1592 0.6234 0.0441 1.4383 2.9608 C12 0.1470 0.3781 0.0853 0.3141 1.1470 C13 0.1088 0.9513 0.0253 0.9375 0.9375 C14 0.0685 0.3180 0.0253 0.9375 0.9375 C15 70tal 9.5133 28.4771 12.0796 11.0598 28.2774 Mass Parameters Time (min) Begin 1.800 PIONA Tiered Search Limit Chir2 Min Chir2 detta (%) Abs Threshold Use Peak Detection Riv Begin 1.800 End 30.000 DHA Chromatogram Filter Chir2 Min Chir2 Min Bo Threshold Use Peak Detection Riv 1.800 Time Step 0.020 Oxygenates Chromatogram Filter Chir2 Max R*2 Limit Bo Threshold Use Feak Detection Background Time		C10	0.3381	1.6927	0.4439	1 4199	5.0987	Benzene	alerie 3			0 3114			
C12 0.1470 0.3781 0.0453 0.3141 1.1470 C13 0.1088 0.9513 0.3180 0.0253 0.9375 C15 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Mass Size Size Size Size Size Size Size Size		C11	0 1592	0.6234	0.0441	1.4383	2 9608	Toluene				3 7044			
C13 0.1088 0.9513 0.9253 C15 0.513 28.4771 12.0796 11.0598 28.2774 Mass % Report for PIONA and Select Individual Components Sis Parameters Tital Background Time (min) Methods Tiered Search Limit Chi*2 Min Chi*2 detta (%) Abs Threshold Use Peak Detection Ri M 11.600 End 30.000 DHA Chromatogram Filter Chi*2 Max 1.0000E-1 0.0003 Disential Use Initial Background Time Background Time State of the search Limit 1.0000E-1 0.8000 0.0003 Disential Dis	1	C12	0.1470	0.3781	0.0853	0.3141	1.1470	Ethylbenzene				0.6225			
C14 0.0685 0.3180 0.0253 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Mass % Report for PIONA and Select Individual Components Sis Parameters Ital Background Analysis Time (min) Methods Tiered Search Limit Chi*2 Min Chi*2 delta (%) Abs Threshold Use Peak Detection Riv Sign 1.400 End 30.000 DHA Chiranalogram Filter Chi*2 Max R*2 Limit 0.0010 BG Threshold Use Initial Use Initial Use Initial Background Time 25		C13	0.1088	0.9513			0.9375	Xylenes				3 9008			
C15 Total 9.5133 28.4771 12.0796 11.0598 28.2774 Mass % Report for PIONA and Select Individual Components sis Parameters Ital Background Time (min) Begin Analysis Time (min) Begin Methods Tiered Search Limit Chi*2 Min Chi*2 delta (%) Abs Threshold Use Peak Detection Riv 25 egin 1.600 End 30.000 DHA V Chromatogram Filter Chi*2 Max R*2 Limit BG Threshold Use Initial Background Time Use Initial Background Time	1	C14	0.0685	0.3180	0.0253			and the second se							
Total 9.5133 28.4771 12.0796 11.0598 28.2774 Mass % Report for PIONA and Select Individual Components sis Parameters Time (min) Methods Tiered Search Limit Chi*2 Min Chi*2 delta (%) Abs Threshold Use Peak Detection RI w sis Parameters Analysis Time (min) Methods Tiered Search Limit Chi*2 Min Chi*2 delta (%) Abs Threshold Use Peak Detection RI w gin 1.400 End 30.000 DHA Chromatogram Filter Chi*2 Max R*2 Limit BG Threshold Use Initial 1.600 Time Step 0.020 Oxygenates Idon 140-160 Idon 1.0000E-1 0.8000 0.0003 Image: Initial		C15		1000000											
Mass % Report for PIONA and Select Individual Components sis Parameters Analysis Time (min) Methods Tiered Search Limit Time (min) Begin 1.800 Methods Tiered Search Limit Chir'2 Min Chir'2 delta (%) Abs Threshold Use Peak Detection Riv 1.400 End 30.000 Time Step 0.020 Oxygenates Chiromatogram Filter 1.0000E-9 40 0.003 Use Initial Use Initial 25 1.600 Time Step 0.020 Oxygenates Chiromatogram Filter 1.0000E-1 0.0003 Use Initial Use Initial Use Initial Background Time		Total	9.5133	28.4771	12.0796	11.0598	28.2774	10							
sis Parameters itial Background Time (min) Begin 1.800 End 30.000 Time Step 0.020 DHA Time Step 0.020 Time Step 0.020 DHA Time Step 0.020 DHA			N	lass '	% Rep	oort f	or PIONA a	nd Sele	ct In	dividua	I Comp	oon	ents		
egin 1.400 End 30.000 DHA Chromatogram Filter Chi ¹ 2 Max R ⁴ 2 Limit BG Threshold Use Initial Background Time End 1.600 Time Step 0.020 Oxygenates Chromatogram Filter 140-160 Interval 1.0000E-1 0.8000 0.0003 Background Time	sis Param Itial Backg	round	Analysis	Time (min)	Methods		Tiered Search Limit	Chi ^A	2 Min	Chi*2 delta (%)	Abs Threshold	Us	e Peak Detection Analyze Spectro	RI wind	
I.400 End 30.000 DHA Chromatogram Filter Chi*2 Max R*2 Limit BG Threshold Use Initial End 1.600 Time Step 0.020 Oxygenates Identified 1.0000E-1 0.8000 0.0003 Identified	inte	(100)	beyin	1.000	T TWEET		a Mindles	1.0	000E-3	40	0.0010		Within Peaks		
End 1.600 Time Step 0.020 Oxygenates v 140-160 v 1.0000E-1 0.8000 0.0003 Background Time	egin 1	.400	End	30.000	DHA		Chromatogram Filter	Chi*	2 Max	R*2 Limit	BG Threshold		- Use Initial		
	End 1	.600	Time Step	0.020	Oxygenates		- 140-160	~ 1.0	000E-1	0.8000	0.0003		Background Ti	me	
		1												1	

- Universal and selective detection
- Unique, class similar spectra
- Complementarity to MS
- Deconvolution of coeluting analytes
- Automated classification and speciation of mixtures
- Good quantitative performance

Instrumental Detection Limits

Paraffin IDLs averaged 41 pg on column

PAH IDLs averaged 28 pg on column

Terpene IDLs averaged 28 pg on column

FAME IDLs averaged 34 pg on column

Fragrance allergen [A], [B], and [C] IDLs averaged 35, 44, and 36 pg on column

Combined Class 2 & 3 Solvents

Analyzing Untargeted Unknowns by GC-VUV: Hangover Pain Relief

Summary:

- Applied GC-VUV residual solvents method to over-the-counter hangover medicine
- Detected an unexpected compound in the sample injected through static headspace
- Identified the unknown analyte as ethanol using VUV spectral library matching

Water Quantitation with GC-VUV

UV ANALYTICS

Introducing the SVGA-100

Streaming Gas Analysis Instrument

Ethylene / Acetylene Analysis

Formalin Headspace – No Separation Case

- Formalin solution headspace was sampled continuously
- Absorption cross sections for water, methanol, and formaldehyde was applied to total absorption

Additional Thoughts

- No vacuum
- Robustness
- Reproducibility of spectra
- Fast GC
 - Spectral vs. chrom resolution

- Universal and selective detection
- Unique, class similar spectra
- Optical differentiation of isomers
- Deconvolution of coeluting analytes
- Automated classification and speciation of mixtures
- Good quantitative performance

What's Next?

- GC-VUV/MS: parallel detection
- VUV is complementary to MS

Thank you for your attention!

Science in a new light

www.vuvanalytics.com

korba@amedis.cz

AMEDIS